Design007 Magazine

PCBD-June2015

Issue link: https://iconnect007.uberflip.com/i/525318

Contents of this Issue

Navigation

Page 47 of 62

48 The PCB Design Magazine • June 2015 by Benjamin Jordan ALTIuM Abstract The biggest problem with designing rigid-flex hybrid PCBs is making sure everything will fold in the right way, while maintaining good flex- circuit stability and lifespan. The next big prob- lem to solve is the conveyance of the design to a fabricator who will clearly understand the de- sign intent and therefore produce exactly what the designer/engineer intended. Rigid-flex circuit boards require additional cutting and lamination stages, and more exotic materials in manufactur- ing; therefore, the cost of re-spins and failures are substantially higher than traditional rigid boards. To reduce the risk and costs associated with rig- id-flex design and prototyping, it is desirable to model the flexible parts of the circuit in 3D CAD to ensure correct form and fit. In addition, it is necessary to provide absolutely clear documenta- tion for manufacturing to the fabrication and as- sembly houses. The traditional attempt most design teams use to mitigate these risks is to create a "paper doll" of the PCB, by printing out a 1:1 representation of the board and then folding it up to fit a sample enclosure. This presents a number of issues: Rigid-Flex PCB Right the First Time – Without Paper Dolls 1) The paper doll does not also model the 3D thickness of the rigid and flex sections 2) The paper doll does not include 3D models of the electronic components mounted on the PCB 3) A physical sample of the final enclosure is needed, which may not yet be available 4) If the mechanical enclosure is custom designed, a costly 3D print will be required for testing. This adds much time and expense to the project. As cool as 3D printers are, it's not a sensible use for them if the modeling can be done entirely in software. This paper discusses practical steps in two approaches to solve these problems, contrast- ing against the traditional paper doll approach above. In the first scenario, a 3D MCAD model of the PCB assembly can be created in the MCAD package where a sheet metal model can be gen- erated for the PCB substrate model. This sheet metal model can be bent into shape in the MCAD software to fit the final enclosure and check for clearance violations. This is not the best approach, but it is better than paper dolls. article

Articles in this issue

Archives of this issue

view archives of Design007 Magazine - PCBD-June2015